STUDY MODULE D	ESCRIPTION FORM		
Name of the module/subject		Code	
Structural Mechanics		010104141010110048	
Field of study	Profile of study	Year /Semester	
Civil Engineering First souls Ctudies	(general academic, practical)		
Civil Engineering First-cycle Studies	(brak)	2/4	
Elective path/specialty	Subject offered in:	Course (compulsory, elective)	
-	Polish	obligatory	
Cycle of study:	Form of study (full-time,part-time)		
First-cycle studies	part-time		
No. of hours		No. of credits	
Lecture: 12 Classes: 10 Laboratory: -	Project/seminars: 1	0 5	
Status of the course in the study program (Basic, major, other) (university-wide, from another five		ld)	
(brak)	(brak)		
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences		5 100%	

Responsible for subject / lecturer:

Michał Guminiak, dr inż. email: michal.guminiak@put.poznan.pl tel. +48 61 665 2475 Faculty of Civil and Environmental Engineering

ul. Piotrowo 5 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Student knows the basic concepts of static of statically determinate rod structures. Student knows the basic concepts related to the strength of materials.	
2	Skills	Student can calculate the internal forces in statically determinate rod structures. Student can calculate the stress and strain in the cross sections of bars.	
3	Social competencies	Student is responsible for brought a basic knowledge of general mechanics and strength of materials.	

Assumptions and objectives of the course:

Knowledge of the theoretical models and mechanics flat rod systems. Learn how to calculate internal forces and displacements of generalized systems statically determinate and indeterminate.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Relationships between displacements, and the load on the statics of simple rod systems. [KW_04]
- 2. Basic principles and theorems of linear structural mechanics. [KW_04]
- 3. Manners to create computational models of flat bar structures. [KW 04]

Skills:

- 1. Determine influence lines if reaction and internal forces in simple beams and trusses statically determinate. [KU_04]
- 2. Determine the distribution of internal forces and calculate the generalized displacement caused by any load, the influence of thermal and kinematic systems in flat rod systems (trusses, beams and frames). [KU_04]
- 3. Determine the distribution of internal forces in statically indeterminate systems using flexibility methods. [KU_04]

Social competencies:

- 1. Student is responsible for the correctness of the calculations undertaken. [K_K02]
- 2. Student describes performed calculations and draw conclusions from their results. [K_K02, K_K10]

Assessment methods of study outcomes

- 1. Written and oral examination at the end of the semester.
- 2. Two written tests checking the knowledge and skills in the subject.
- 3. Two exercises for individual design solutions.

Faculty of Civil and Environmental Engineering

Course description

- 1. Models structural systems.
- 2. Determination of influence lines for beams and trusses statically determinate.
- 3. The principle of virtual work.
- 4. Theorem: Betti, Maxwell and Rayleigh.
- 5. Statically indeterminate systems rod, the impact load forces generalized changes in temperature and settling supports.
- 6. Solving framework, continuous beams, trusses and arches using flexibility method.

Basic bibliography:

- 1. W. Nowacki, MECHANIKA BUDOWLI, PWN-Warszawa, 1974
- 2. J. Rakowski, MECHANIKA BUDOWLI, ZADANIA, CZĘŚĆ I, Wydawnictwo Politechniki Poznańskiej, 2007
- 3. W. Nowacki, Mechanika budowli, PWN, Warszawa, 1974.
- 4. Z. Dyląg i in., Mechanika budowli (t. I i II), PWN, Warszawa, 1989.

Additional bibliography:

- 1. M. Guminiak, J. Rakowski, ZBIÓR ZADAŃ Z MECHANIKI BUDOWLI, wydanie drugie poprawione i uzupełnione, Wydawnictwo Państwowej Wyższej Szkoły Zawodowej im. Stanisława Staszica w Pile, 2009
- 2. M. Guminiak, J. Rakowski, MECHANIKA BUDOWLI, zbiór zadań z elementami ujęcia komputerowego, Wydawnictwo Państwowej Wyższej Szkoły Zawodowej im. Stanisława Staszica w Pile, 2011
- 3. J. Rakowski, Mechanika budowli. Wyd. Politechniki Poznańskiej, rok 2007.
- 4. M. Guminiak, J. Rakowski, Zbiór zadań z mechaniki budowli-wydanie dgrugie uzupełnione i poprawione. Wyd. PWSZ w Pile, rok 2009.

Result of average student's workload

Activity	Time (working hours)
Preparation of the first exercise design.	20
2. Preparation of the second exercise design.	20
3. Preparation of the first test.	15
4. Preparation of the second test.	15
5. Preparation of the exam.	12

Student's workload

Source of workload	hours	ECTS
Total workload	138	5
Contact hours	38	2
Practical activities	70	3